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Abstract Ontologies, at least in the form of taxonomies, have proved
rather successful, and are employed in many fields, as far apart as bi-
ology and finance. Reaching an agreement over a single ontology, or a
set of shared ontologies, has proved difficult, and to obtain actual inter-
operability it is necessary to map the different ontologies. Mapping one
entity between a source ontology and one in a target ontology means to
compare the first entity with all the entities in second ontology: match-
ers analyse different aspects of the entities to identify the similarities.
A single matcher can analyse only some aspects, and often has to rely
on incomplete, imprecise or vague information. Therefore combining the
outcomes of different matchers can yield better results.

In this paper I present a framework that uses Dempster-Shafer as a model
for interpreting and combining results computed by the matchers.

1 Introduction

Ontologies have proved to be a powerful tool, and they have become rather com-
mon. For example, ontologies in the form of taxonomies are used by Google and
Yahoo to categorise websites and by Amazon, eBay and other vendors to classify
their products. A more complex ontology, such as GeneOntology, is used by bi-
ologists and bioinformaticians to uniformly name biological functions, processes
and locations. Other ontologies are used in medicine, to classify illnesses and
drugs, in finance, in software engineering and so on.

However, the development and the acceptance of a common ontology has
failed to occur, and consequently a number of different ontologies are used. This
heterogeneity can be both positive and negative. It is positive, because every
ontology represents a different side of reality, and the overall representation of
the world is richer. It is negative because it causes difficulties in mutual under-
standing. To exploit the richness provided by the ontologies it is necessary to
build bridges between them. The various attempts to reconcile ontologies can be
divided into [9]:

merging: the act of building a new ontology by unifying several ontologies into
a single one

aligning or mapping: used when sources must be made coherent and consis-
tent, but must be kept separated



integrating: entails building a new ontology composing parts of other ontolo-
gies.

Mapping ontologies lays at the basis of both merging and integration. This pa-
per presents a framework for ontology mapping that uses Dempster-Shafer to
interpret and combine the results computed by different matchers.

Section 2 introduces ontologies and the possible mismatches that can occur
between them. Section 3 introduces the problem of ontology mapping and dis-
cusses a possible classification for the approaches discussed in literature. Section
4 discusses some of the issues that mapping algorithms encounter, and section
5 presents the framework, based on Dempster-Shafer, for tackling some of the
issues. Finally, section 6 shows some partial results.

2 Ontology Formalisation

Ontologies specify the terminology used to describe a domain:
An ontology is a specification of a conceptualisation.|8]
or more in detail:

An ontology is [...] a description of the concepts that exist or can exist in
a particular domain as well as of the relationships in which the various
concepts may enter.[8]

According to [16], an ontology is composed by definitions of classes, relations or
instances. The definitions of these entities are tuples:

Def =(T,D,C)
where T is the term that identifies the entity to define (definiendum in [16])
and it is an atomic formula in a formal language; D is the formal definition
(definiens in [16]) and it is a possibly compound formula in a formal language;
C is the concept description, obtained in the conceptualisation step, and can be
expressed in natural language. For example, using Description Logic as formal
language:
T : Human
D : Human = Animal 1M Rational
C :”A human being is a rational animal”

If the ontology is a simple taxonomy of classes, the definition is the hierar-
chy of the subsuming classes of the entity to define. The concept description
C can either be explicitly written in the ontology (for example using the tag
rdfs:comment in a rdf/owl ontology), or can be an implicit meaning conven-
tionally associated to the term.

Database schemas, like ontologies, provide a vocabulary of terms that de-
scribe the domain of interest, and constraint the meaning of terms used in the
vocabulary, but usually do not provide an explicit definitions for their data.



According to [16], ontologies can differ because of two main categories of
mismatches: conceptualisation and explication mismatches. The first category of
mismatches originates from the initial phase of conceptualisation of the domain.
Conceptualisation mismatches include class and relation mismatches: for exam-
ple, classes can be divided into different subclasses, or attributes can be assigned
to different classes. Explication mismatches are caused by differences in the way
the conceptualisation is specified in a formal language: for example, there might
be ambiguities derived from using the same term to identify different entities, or
from using different terms to identify the same entity.

3 Ontology mapping as decision making under
uncertainty

An ontology mapping algorithm is a function that receives two ontologies and
returns the relations between their concepts:

map: Ox 0 — R (1)

where R contains all the binary relations (equivalence, generalisation, speciali-
sation, similarity, disjointness) between concepts in O; and O,.

Stated otherwise, the function map finds the subsets &, ..., %, of the Carte-
sian product O; x O2 that contain the binary relations between the items in the
two ontologies:

dsequz'valence = {<t‘(1)1 ’ tb02> ) <tco1 ) t((i)2> .. } c 0, x 0,
qubsumedBy = {<t901 ) tél)2> ’ <tgla 32> .- } g 01 X 02

This is obtained calling a matcher function that verifies to what degree p each
pair <t61,t62> belongs to the subset &,.;:

matcher : t Xt X $rep = (2)

The problem is how to verify the existence of a particular relation between a
pair of terms from two different ontologies. If the ontologies are inconsistent,
as it is often the case, it may be impossible to prove the relations using logic
reasoning from the definitions in the ontologies: 01,05  r (tiol,téz) may not
be derivable or, even worse, wrong relations may be derived. Therefore, mapping
algorithms need to use other methods to identify relations between terms in the
different ontologies. These methods usually assume that ontologies share some
similarities that can be found. For example, the similarities can be in the label
used to identify the entities T', in their formal definition D, or in the description
(possibly implicit) of the concepts attached to the entities.

The membership of a pair <t§)1 , thQ> to a subset ®; often cannot be precisely

stated. This may due to the vagueness or ambiguity of the terms (for instance,
the terms may have many different senses, with only a few overlapping), to the



lack or the imprecision of the information available in the decision process (for
example a term or a sense may not be included in a thesaurus), or to actual
differences in the meanings (if the system is looking only for equivalence, book
and booklet are similar, but not completely equivalent).

Not all the relations are interesting. To obtain a working interoperability,
some relations are more useful than others (for example, knowing that term ¢; is
generically related to a term ¢; is less useful than knowing that ¢; is equivalent to
tr). Moreover, the pair with the highest degree of membership is a more useful
- and possibly more correct - mapping than the other pairs with lower degrees:
the membership reflects how correct is the relation between the terms.

A general method for finding a mapping between a given entity ¢ € Ogpyree
and an unknown entity t; € Oygrger is found comparing the given ¢ with all
the entities in Oyqrget, and keeping the pair that belongs to the most significant
relation (for example equivalence), with the highest membership degree pu:

mapper : 1 X Otarget - (tj7 Telaﬂ) (3)

More sophisticated methods can verify the consistency of the choice, and keep
the strongest mapping that does not conflict with other mappings.
Different approaches of ontology mapping in literature can be classified by:

— the binary relations they search: some look only for similarity [13], other look
for more complex ontological relations [7].

— the methods they use for taking the decision: some use only string comparison
between the terms, others use thesauruses and compare the semantic sim-
ilarities of the conventional meaning attached to the terms, others analyse
the similarities in the structure of the ontologies [2], others learn to classify
the instances of the concepts [5], while most of the recent ones combine these
techniques [4,6,7].

— The type of membership degree they use, often expressed as confidence level.
Some use hard thresholds: the subsets @1,...,%, of O; x Oy are crisp sets,
and a pair either belongs to the set or does not [7]. Others implicitly consider
these subsets as fuzzy sets, and pair can belong to these sets with different
degrees of membership [4].

A more detailed review of these approaches can be found in [14,11].

4 Mapping issues

4.1 Combining matchers

A matcher analyses only some aspects of the hypothetical relation between two
terms, and may lack or omit important information. For example, comparing
strings omits the fact that terms have a conventional meaning attached to them.
Similarly, comparing senses of the terms using an external thesaurus omits both
the fact that the formal definitions of the terms influence their meaning, and



the uncertainty due to the incompleteness of the thesaurus (terms may not be
listed, or senses may not be present. This is particularly true when the matcher
uses a general-purpose thesaurus such as WORDNET for technical expressions)

It therefore becomes important to combine the results from different match-
ers, in order to exploit all the information available.

4.2 Interpreting matcher’s results

To combine the results it is necessary to interpret them in some semantically
uniform way. Matchers return different types of results: some return natural
numbers, other boolean values, other ratios. For example, EDITDISTANCE re-
turns the number of changes necessary to transform one string into another (for
example, the distance between book and hook is 1, between course and curse is
still 1, between thing and book is 5), while a matcher that check if one string is
an infix of another will return boolean values.

A possible interpretation, as described in [4], is to consider the result of a
matcher a measure that gives the plausibility of the correspondence between the
terms in a pair.

4.3 Indistinguishable results

We have seen in section 3 that to map a term ¢, a matcher is called to evaluate
pairs of terms from ¢ x Oyqrget- However, it may often be the case that a matcher
cannot distinguish between pairs: for example, EDITDISTANCE will return the
same result “1” for (rate, race),(rate, rave), (rate, rage), etc. According to the
previous subsection, the interpretation for this outcome is that the the pairs
must have the same plausibility.

Moreover, results that are close enough can be interpreted as sharing the
same, or a very similar, plausibility level. For example, it is not meaningful to
assign a different confidence to a pair with a distance of 5 and another one with
distance 6: both are unlikely to be the mapping. Thus, it is possible to define
intervals whose internal values correspond to the same confidence level.

4.4 Ignorance and Reliability

A matcher may also be unable to give evaluation for a pair, as it lacks informa-
tion: in this case, all hypotheses are equally probable. For example, a matcher
that uses a thesaurus will not be able to evaluate a pair if one of the two terms
is not listed in its dictionary.

Matchers may also have different degrees of reliability: if EDITDISTANCE
maintains that two terms are equivalent, the assertion can be false because the
terms can be homonyms. The reliability measures how probable is that an as-
sertion made by a matcher is correct [3].



5 A mathematical framework to combine the matchers

There are different mathematical theories that can be used as a framework for
a system that must handle the uncertainty issues discussed in section 4, among
which the Bayesian approach and Dempster-Shafer are the strongest candidates.
However, Dempster-Shafer [17] is particularly adapt to tackle them: using this
theory to model the mapping process it is possible to give a uniform interpreta-
tion, consistent with the uncertainty inherent in the problem, to the results of
the matchers and to combine them in a mathematically sound way.

Dempster-Shafer has been considered for different uses, such as medical di-
agnosis [1], robot navigation through image processing [10], and it has been
proposed for ontology mapping for query answering in [12].

While in the standard Bayesian approach, probabilities are assigned to single
entities, in Dempster-Shafer the mass is distributed on sets of propositions. The
mass distribution is a function m(-) that distributes a mass in the interval [0,1] to
each element of the power set 2€ of the set of propositions © = {0;,60s,...,6,}
called frame of discernment. The total mass distributed is 1 and the closed world
assumption is generally made: the frame © contains the true hypothesis. This is
expressed assigning mass 0 to the empty set (), called contradiction. The mass
m(O) assigned to the frame represents the mass that is not possible to assign to
any particular subset of @. Different mass distributions can be combined using
Dempster’s rule of combination that computes the probability mass assigned to
C COgiven A C O and B C O, where A is supported by m; and B is supported
by ms.

The model is applied to the function in expression 3 that searches an unknown
entity ¢; from an ontology Oyarget that best matches a given term ¢ in an ontology
Osource- The frame of discernment @ of the problem becomes the Cartesian
product ¢ X Oygrget, Where each proposition is a pair (t,¢;).

5.1 Interpreting the results

In Dempster-Shafer, mass assigned to a proposition means support to the belief
that the proposition is true. In this model, the matcher is considered an “expert”
that uses a specific method to analyse a pair and gives an opinion about the
similarity of the terms. The similarity measure must be converted into a measure
of the belief in the correctness of the mapping.

As we have seen in section 4.3, the conversion is made considering that the
matcher cannot distinguish pairs of terms that yield the same similarity results
and it may be indifferent to pairs with similar results.

Therefore, the range of possible results of a matcher is split into intervals.
An interval iy, corresponds to a mass my: pairs whose results fall into the inter-
val are grouped in the same set s, and the belief in the fact that the correct
mapping belongs to the set sy is given by my. For example, for EDITDISTANCE
the intervals, coupled with their masses, are:

Iraipist = {([0,0],0.48) ([1,2],0.3) ([3,4],.14) , ([4, 5],0.08) ,, ([5, ..], 0.0)}



Figure 1 A shows how the pairs (marked by h;) are divided into sets cor-
responding to the results of the matchers, and how sets generated by different
matchers overlap.

Representing Belief in contradiction The closed world assumption in Clas-
sical Dempster-Shafer theory implies that the correct mapping must be in the
frame of discernment @ = t X Oyqrget- However, it is possible that there is no
proper mapping in Oigrget for t € Ogoyrce- To make the theory consistent with
the reality, we need to reject the closed world assumption and accept the open
world one. This assumption will be required when combining the results, as will
see in section 5.2.

Representing Ignorance and Reliability We have seen in section 4.4 that
a matcher may lack the information needed to evaluate correctly a pair. For
example, if the matcher has no information about the term ¢ € Ogpyrece it is not
able to evaluate any pair in the frame of discernment. In this case, none of the
mass is allocated, and it should be transferred to the frame of discernment ©.
We have also seen, still in section 4.4, that the outcomes should be handled with
care, as matchers can have different degrees of reliability. For example, EDITDIS-
TANCE may wrongly support a particular set of pairs. The mass distributed by
a matcher should be discounted by a reliability factor specific for the matcher.
The discounted mass becomes unallocated mass, and should be interpreted as
ignorance and transferred to the frame of discernment ©.

Matcher interface The framework is independent of the the matchers used:
they are considered as a function that compare a pair and they can be plugged
in the framework. Their results are interpreted using an interface layer, that
converts them into mass distributors. A matcher interface MI is the tuple:

MImutcher = (Imatcherypmatcher>

where Iatcher iS the set of intervals {{(r,,m1),...,{rn, m,)} of the results range
with the corresponding mass, and pmatcher i the reliability of the matcher, used
to discount the distributed masses.

The intervals and their masses can be computed running the matchers over
known mappings and counting how often the result for a correct mapping falls
inside the intervals. The reliability of a matcher can be computed using a separate
set of known mappings and counting the frequency of the errors made by the
matcher in recognising the match.

5.2 Combining the results

The mass distributions generated by the matchers are combined using Demp-
ster’s rule:
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One of the main problems that arises using Dempster’s rule is that normali-
sation can yield counterintuitive results when combining contradictory evidences
[18]. The judgements made by the matchers can often be contradictory: for ex-
ample, two entities can have very dissimilar strings, but can be easily recognised
as synonyms by a thesaurus.

A possible solution is to avoid the normalisation. This means to drop the
closed world assumption [15] by making Bel () # 0 possible. As we have seen
in section 5.1, this is a useful feature for the process we need to model.

Figure 1 B shows how the sets obtained from different matchers are combined
using Dempster’s rule to generate a new mass distribution.
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different soundex different soundex
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Figurel. Combining results

5.3 Choosing the mapping

Once the masses have been distributed and combined, it is necessary to extract
the most likely entity from the mass distribution. Dempster-Shafer makes it
possible to compute the belief about a set A C @ of propositions, as the sum of
all the basic masses that support its constituents:

Bel(A) = ¥ gy m(B)
It also provides the formula for computing the plausibility of the set A, that is
the measure of the extent to which A might be true:

PI(A) = 1 = Bel(A) = ¥ g 429 m(B)
The plausibility forms the upper bound for the belief in A. In some interpreta-
tion, the interval [Bel(A), PI(A)] is the ignorance about A, as in figure 2.

In the current version of the framework, belief and plausibility are computed
for singletons, as it is exponentially complex to compute them for different com-
binations of sets.



plausibility

0 <
R N| R
] 1

< ><

Belief in "A" [ignorance] Belief in "not A"

Figure2. Interpretation of Dempster-Shafer

Currently, the best mapping is chosen ordering the pairs by plausibility, and
discarding all the pairs with plausibility and belief below an arbitrary threshold,
and with ignorance higher than another arbitrary threshold. This thresholding
guarantees that pairs with very high plausibility, but very low belief are dis-
carded.

6 Testing

The framework described in this paper is independent of the matchers used: other
ontology matching systems could be used as specific and expensive matchers.
However, to test the general concept, the algorithm has been implemented and
it is available at the address:

http://pyontomap.sourceforge.net

In the current version the matchers in table 1 have been implemented. The tests
were executed comparing two pairs of ontologies, after manually creating the
mappings between their entities for comparison.

The first pair of ontologies belongs to the benchmark in the Ontology Align-
ment Evaluation Initiative (http://oaei.ontologymatching.org/2006/) : the
first ontology is the number 101, while the second is number 205 and replaces
the terms in 101 with synonyms. Both ontologies have about 100 entities.

The second pair of ontologies were created for experiments of interaction
between agents. The taxonomy and the properties are taken manually from
Amazon and eBay. Both ontologies consist of about 150-200 terms, and are
available at the url http://pyontomap.sourceforge.net/testing.

The tests were run using different sets of matchers. The first battery of tests,
shown in figure 3, was run disabling the mass redistribution for less reliable
matchers (see section 5.1), while the second battery, shown in figure 4, was
run with the mass distribution. Although the outcomes are provisional and the
matchers need calibration, it is possible to notice that combining the matcher
improve both precision and recall, and that taking into account the different
reliability of different matchers improve the results.

7 Conclusion

In this paper I have discussed the issues that ontology mapping systems must
address, and I have proposed a generic framework that allows to combine differ-
ent matching algorithms. The framework is independent of the actual matchers



String based matchers: verify the similarity of the labels used for the entities.
EditDistanceMatch: counts the number of changes required to transform a
string into another one
InfixMatch: checks if a string is inside another one (“GPS” matches “Eletronics,
GPS and Cameras”)
PrefixMatch: checks if one string starts with the other one (“Mac” matches “Ma-
c09”)
PostfixMatch: checks if one string ends with the other one (“OS” matches “Ma-
c09”)
InitialsMatch: checks if the initials in one string match the other string (“Oper-
ating_System” matches “OS”)
Conventional Meaning based matchers: use an external thesaurus to compare
the meaning conventionally attached to the label
WordNetMatch: counts the number of intersecting senses between the terms,
its synonyms, their direct hypernyms and hyponyms.
Ontology Structure based matchers: verify how similar are the entities surround-
ing the two entities in their ontologies.
AncestorMatch: checks how many ancestors are similar. Similarity is computed
using string based matchers
ChildrenMatch: checks how many children are similar.
SiblingMatch: checks how many siblings are similar
RoleMatch: checks if the entities have the same role (class, property or instance)
in the two ontologies
PastMappingMatch: uses mapping approved by an external reviewer.

Tablel. Implemented matchers

used. The main result of the framework is to give a consistent interpretation
to results returned by different matchers and to provide a mechanism for com-
bining them. The framework’s implementation is under development, and uses
an ad hoc set of matchers, and while the results are still provisional and need
improvement, the framework behaviour is consistent with the goals.
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